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ABSTRACT

The physical model of a multi-constant elastic

material [1]1 with consideration of, couple-stresses,

is studied critically to determine whether it more

reasonably represents a 3-constant isotropic material

or a 6-constant centro-symmetric cubic crystalline

material. A description of a critical shear experiment

on the model is piesented along with experimental re-

sults. A parameter a which is definitively related

to the question is defined and its value determined on

the basis of statical deformation experiments. The

conclusion is that the model behaves as a cubic crystal

showing couple-stress effects.

1 Numbers in brackets refer to references at end of

report.



INTRODUCTION

In a previous paper [1], a physical model of a so-called

3-constant isotropic elastic material was used to illustrate

the phenomenon of couple-stresses. The model and its analysis

were predicated on the assumption that couple-stresses exist

and that the model represents an isotropic material, at least

to some approximation. An obvious question provoked by the

structured form of the model is whether it does not more

accurately represent a cubic elastic material. As previously

pointed out Ill, Professor R. D. Mindlin strongly urged con-

sideration of such a possibility. Consequently the present

paper is intended to provide an analysis of the model from

such a viewpoint. At first it is considered worthwhile to

briefly review the classical theory of the constitutive equa-

tions of anisotropic materials and its extension to include

considerations of couple-stresses.

CONSTITUTIVE EQUATIONS OF GENERAL ANISOTROPIC SOLIDS

The classical theory of the deformation of crystals,

without consideration of couple-stresses, has been extensively

studied in the past [2, 3, 4]. The relationship of the con-

cept of isotropy to that of a crystalline structure is a

peculiar one. The concept of an isotropic body is not con-

tained in that of the crystalline group and can only be
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defined as a body resulting from a random orientation of

crystals which produces a statistical equivalent to a solid

continuum specified by two independent elastic constants. It

is clear that if one contemplates the perfectly crystalline

structure he diverges from the concept of isotropy. The

group of crystals.extends from the simplest, which is the

centro-symmetric cubic, to the most complex, which is char-

acterized by 21 elastic constants [4]. The defining device

for crystalline structure is found in the mathematical trans-

formations of rotation, reflection, and inversion [4]. In

the classical theory, the constitutive equations relating the

strain tensor and the stress tensor contain 81 constants

which, because of symmetries and energy considerations, re-

duce to 21 constants in the case of the most complex crystal

[2]. For the simplest crystal, the centro-symmetric cubical

one, the independent constants reduce to 3 in number. As is

well-known, there are two independent constants in the case

of isotropic materials.

As long as couple-stresses are considered to be non-

existent, the old classical theory of crystals is probably

satisfactory for most purposes. However, once couple-stresses

are postulated, as tl-e present authors consider that they...

should be, the situation becomes more compfit6ded. Kroner

assumes the burden of this complexity in his attempt to ex-

plain deformation phenomena. He uses the idea of the motion

of dislocations associated with the assumed existence of
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couple-stresses to explain the phenomenon of plasticity.

Furthermore, he also speculates that the deformation of the

elastic framework of perfect crystals may introduce the need

for couple-stresses in order to maintain equilibrium [5].

The view of the present authors, however, is that a student

of continuum theory is not constrained to espouse any partic-

ular theory of the mechanical structure of matter but may at

once resort to the generalization of the concept of continua

by postulating the existence of couple-stresses. From this

point of view the onus is on anyone who denies the existence

of couple-stresses to demonstrate that they do not exist in

any particular deformed body.

In any event the present paper is concerned with the

proper definition of a cubic elastic material, in the presence

of couple-stresses and its analysis. Furthermore, having

determined the explicit form of the constitutive equations

for such material the deformation of the physical model [1]

will be studied to determine whether it approximates a cubic

crystal in its action.

DERIVATION OF THE CONSTITUTIVE EQUATIONS
FOR A 6-CONSTANT CUBIC CRYSTAL

For the purpose of clarity, a few words about the defini-

tion of stress and strain will now be given. Because the

existence of couple-stresses is postulated in the theory, it
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will be necessary to use symbols for the symmetric part and

the anti-symmetric part of the stress tensor. Furthermore,

because of the peculiar nature of couple-stresses, the couple-

stress tensor will be divided into the deviatoric and the

spherical parts [6].

The usual total resultant shearing and normal stresses

will be designated by T and written in terms of the sym-

metric and anti-symmetric parts as follows:

= s + a (1)

where Ts is the symmetric part and Ta is the anti-
ii ii

symmetric part.

Furthermore, the couple-stresses will be designated by

q iJ and written in terms of the deviatoric part and the

spherical part as follows:

q qd + (2)qij i j 3 (kk)6iJ

where qiJ is the deviatoric part and the spherical part is

represented by the terms in qkk The repeated index means

summation over the 3-dimensional indices 1, 2, 3 , as usual,

and 6ij is the Kron-%ker delta.

Now T ij , 'Ji in general.
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It may be observed that

.s 1C + r )

and (3)
a

iJ a ('CiJ - Ji )

ii

The lineal and shearing strains, having the same meaning

as in dlassical elasticity [7], will be designated by ij

and are written in terms of the displacements ui as follows:

iJ- 2(uij + uji) (4)

where the comma means differentiation. The defornation corre-

sponding to couple-stresses will be designated by Kij and

written as gradients of rotation as follows:

Kij =e mj mji (5)

where

e mJ - 0 , when any two of the indices are equal

- +1 , when A,m,J is an even permutation of the

numbers 1,2,3

- -1 , when 2,m,J is an odd permutation of the

numbers 1,2,3

0'MI = (Um, - ux, m )

2um

or as some investigators do we may write
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K - 'j (6)Kij = J,i(6

where in rectangular Cartesian coordinates the components of

rotation are as follows:

1(u3  6u2)
e I =

2 6x2  6x3

1 0)6U3 (7)2 6x 3  6x1

= 1 u2 1 1)0)3 -( - )
2 x X2

For a centro-symmetric general anisotropic material the

energy function W may be written for an initially unstrained

elastic body as follows:

w(rij , K l) - 1 s . ii j +l TiJ K I (8)
ij2 k2ii 2 Im ij

where and Tij are elastic constants corresponding to

the force-stresses and the couple-stresses respectively L6].

From the energy function expressions for the symmetric
s

part of the stress components TiJ and the deviatoric part of

the couple-stresses may be written as follows:

Irs _6W Skj-8 - Sk2 ek
ij 6rzij jk

and (9)
qd W TmK

ij = Kij ij IM
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In a rectangular Cartesian system of coordinates:

Eii = EiJ

and (10)

Kij = KiJ.

Also the usual symmetry conditions can be proved [3]:

=j kA

and (II)
T = T~m

Im iJ

The 4th order tensors S and TiJ in indices which

run over the values 1,2,3 for 3-space have apparently 81

components. However, as is well-known symmetry and thermo-

dynamic conditions reduce the number radically. In fact, it

is readily shown that the 81 values for S reduce to 21 by

the symmet-y relations [7] and the further symmetry relations:

s ij Sij

and (12)

s ij = ji

which result from the symmetry relations:

TS 5

iJ = ji

and (13)
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The further reduction of the tensor S to represent

the case of the centro-symmetric cubic crystal is given in

standard texts on crystallography [4]. Then the three'inde-

pendent nonzero components turn out to be:

S11 11 22= 3

$22 3 3  =33

Using contracted notation for simplicity of writing the

explicit form of that portion of the constitutive equations

which derive only from forces and not from couples, may be

written:

11 = S11  1 1  12 22  S 12 E33

Is S + S E + 6
'2 2  = S12  1 1  S11 2 2  S 12  33

SS +S C + S33 S12  11 S12 2 2  S1 1  33

r s(15)
23 44 23

13 44 13
5 = l

12 $44 £12

Now to derive that portion of the constitutive equations

which derive only from consideration of couples at a point,

it is necessary to take into account the asymmetry of Kij
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and qJ as well as the geometrical fact that:

Ki = 0 (16)

which implies that

qd 0 (17)

[again repeated index implies summation].

It is then clear that the reduction of the 4th order ten-

sor Tij is formally somewhat different from the reduction of

Si J  From the conditions (16) and (17) on Ku and q d re-

spectively the following nine conditions are imposed on Tij :
kj

T = 0 (18)ij

where i,J take on the values 1,2,3 and the repeated index

k implies summation.

From the methodical application of the transformations

of rotation, reflection, and inversion, the explicit form of

that portion of the constitutive equations which derives from

consideration of couples at a point may be written as follows:
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qd 3A
11 2

d 3Aq22 - K22
2

qd3 3AKd 2 K 3 3

dB

q2 3 = CK2 3 + BK32

32= K3 2 + BK2 3  (19)

13= K 3 + BK3 1

q31 = CK3 1 + BK! 3

d
q12  = CK12 + BK21

d

q2 1 = C 21 + BK1 2

where A, B, C are independent constants.

If the material were isotropic, the following conditions

apply:

S 11 S12 $44

and (20)

3A B+ C

2

For a centro-symmetric cubic crystal the six independent

elastic constants are then SII , S12 , $, A, B, and C

10



As a first step beyond the theory of classical crystal-

lography which requires only the constants S11 , S12 , S44,

it seems appropriate to place B equal to zero. In this

event, the number of nonzero independent constants is appar-

ently five, which are the three corresponding to classical

elasticity and the two introduced because of consideration of

couples at a point. These latter two constants, A and C ,

correspond to twisting couples and flexure couples respec-

tively.

PHYSICAL MODEL OF A 6-CONSTANT CUBIC ELASTIC MATERIAL

As observed in the introduction to the present paper,

one of its principal objectives is to examine the question

of whether a physical model used previously [1] represents a

3-constant isotropic material really or more appropriately a

6-constant cubic elastic material. A crucial test consists

of a determination of the value of a parameter a given as

follows [9]:

as 44 (21)
SI1 - S1 2

If a equals unity, the first condition (20) is satisfied

and the material is presumed to be isotropic. On the other

hand if a is not equal to unity, with due consideration of

margins of experimental error, the material will be presumed

to be cubic crystalline.
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As it turns out, the tension experiments previously de-

vised and conducted [1] properly determine the values of the

constants S1 1 , S12 whether the body is isotropic or cubic.

Therefore only a single additional experiment, for the deter-

mination of the shear modulus S44 , is required. The dis-

placement functions and the shear experiment will now be

described. For convenient reference some details of the

physical model are shown in Fig. 1.

EXPERIMENT TO DETERMINE ELASTIC SHEAR CONSTANT $44

In order to evaluate the shear constant S44 it is

sufficient to assume that a rectangular prism is loaded

around its lateral faces with uniformly distributed shearing

stresses of constant magnitude, say T as shown in Fig. 2.

The displacements caused by such a loading may be obtained

theoretically by solution of the corresponding plane strain

problem of an infinitely long rectangular prism. It is as-

sumed satisfactory for experimental purposes, to an acceptable

degree of approximation, to represent such a theoretical

situation by a slice of the prism.

In order to obtain theoretically determined displacement

functions it is necessary to solve the six equations of equi-

librium [1, 81, three on force and three on moments. Obviously

for the present assumed shape and simple loading, these equa-

tions reduce to the following two:
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61 + -- = 0x 1 6x 2

and (22)
b r12 + 6,r 220
-.-- + - -=0
6x 1 6 x2

The only compatibility condition which is not identically

satisfied is as follows:

2 2 26 2

" -- + -x2 = 2 .. (23)
6126l6 1 6x2

The solutions of this simple boundary value problem, in

terms of stresses, can be. seen to be:

1= 0

'2 2  =0 (24)

1 = T21 T = constant

Now, as usual, an integration of the strain-displacement

equations will provide the necessary equations for the deter-

mination of the shear modulus $44. The equations are:
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u1

6x 1

- - = 0 (25)
6x2

and - (- + 6u) =
2 2 xI 1 s44

Consequently one obtains for the displacement functions u1

and U2  the following:

UI = -_ x 2
S44

and u2  = IT x I  (26)
S44

The displacement (uI , u2 ) can be measured at any point

(x1 , x2) with the model loaded by constant shearing stress

T Consequently, S44 can then be evaluated.

A model consisting of metallic cubes connected by either

flat steel strips or round steel rods was designed and fabri-

cated. It is of the same type as the one previously described

in the literature [1]. For the present investigation, two

types of connector pieces, flat and round, were used. The

reason for making model slices with the round rods is that it

is planned to build up later large prisms which are essentially

3-dimensional models for study purposes. Such models will
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enable one to measure the final elastic constant, the twist

modulus A , which is still undetermined.

As one may recall from the previous paper [1], the flat

steel connector pieces had cross-sectional dimensions

0.5" by 0.016". The round steel rods used in the second

model are 0.0957nches in diameter and 2 inches between

cubes.

In order to perform the experiments each model was

mounted horizontally so that it rested on several steel ball

bearings in order to maintain itself in the horizontal plane

when it was loaded and at the same time minimize any frictional

forces which might oppose the free deformation.

In order to deform the model as required, loads were

applied through special fittings such that they were uniformly

distributed through the thickness and along the sides. The

experimental apparatus and model are shown in Fig. 3. The

elongation and contraction of the two diagonals were measured

using special displacement gages [1]. Elongation of the one

diagonal and simultaneous contraction of the other were prac-

tically equal in magnitude as expected. However, on account

of small differences the two measured lengths were averaged in

order to calculate the change in angle y at any corner of

the model. Measured values are shown in Fig. 4. For infini-

tesimal deformation theory, the change in angle is given by

the expression:
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ul u 2)(27)-+
3x2  3x1

Hence knowing the value of the change of angle, the value

of the constant S can be readily calculated from Eq. (26).

An additional experiment was conducted on the model with

round rod connectors in order to determine the values of S

and S12 .

All of the elastic constants so far determined by means

of experiments are shown in Table I.

DISCUSSION AND CONCLUSIONS

Since the pertinent .elastic constants have been determined,

the decisive constant a needed to determine whether the model

may be considered isotropic or cubic crystalline can be calcu-

lated. Its value for the first model is 19 x lO- 3 and for

the second model 15.8 x 10- 3 .

It is clear that since the values of a are so radically

different from unity, the models cannot be considered as repre-

senting an isotropic material. So far as the evidence goes

they may be considered as models of the somewhat more complex

cubic crystalline matter.

It should be recalled that the value of the constant S12

for the present type of model is approximately zero.
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The last constant associated with a cubic crystalline

material exhibiting the phenomenon of couple-stresses is the

twist constant which has been designated A in the present

paper. For the purpose of determining the value of this con-

stant it will be necessary to fabricate a 3-dimensional model

built up out of the cubelike substructures. Such a model, of

sufficiently large proportions, is now being constructed and

probably will be subjected to an experiment 4.n the near future.

In addition to experiments for the determination of the

twist modulus A , vibration and elastic wave transmission

experiments are planned.
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Table I. Elastic Constants

Tensile Shear Flexure
Model Modulus Modulus Modulus

Sllh lbs./in. S44h lbs./in. Ch lbs./in.

With steel strips .182 x 106 3572 .295 x 105
as interconnection

With steel rods 6

as interconnection .132 x 10 2080 .777 x l05
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